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The nonlinear Schr6dinger equation with Gaussian convolution kernel K2 
induces the group SU3 with reference to the classification of the multiplet 
structure of the eigenstates. Such a field can be used to describe some atoms 
(where the outermost  electrons are related to s-orbitals) as a self-interacting, 
extended particle with an internal structure. In the case of those atoms, where 
the valence electrons are described by p-orbitals, and almost all molecules the 
Gaussian kernel K2 has to be generalized by Hermite polynomials. By that, we 
can formulate a nonlinear field theory, establishing the spatial symmetry of a 
system via basis structure functions. Thus the symmetry represents the most 
essential starting-point for treating molecules as quasi-particles with an 
internal structure. It will be shown that there is some connection with the 
concept of chirality functions and the G i n z b u r g - L a n d a u  theory of super- 
conductivity. The latter theory indicates that we can consider the nonlinear 
Schr6dinger equation and its generalizations as a classical field theory being 
associated with phase transitions. 

K e y  w o r d s :  Nonlinear Schr6dinger equation - Gaussian kernel - Basis struc- 
ture functions - Symmetry principles. 

I .  I n t r o d u c t i o n  

Nonlinear generalizations of the Schr6dinger equation for the description of 
interaction phenomena have become an important tool in many disciplines, e.g. 
theoretical chemistry, solid-state and nuclear physics. In recent time, they find 
also applications in plasma and elementary particle physics, and in the theory of 
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measurement processes, respectively. In this paper, we intend to analyze some 
mathematical and physical aspects of such generalizations by taking account of 
problems of molecular physics, but we shall see that the methods under consi- 
deration may also be used in other domains of physics. 

Because it is not satisfactory to write down "ad hoc" nonlinear field equations, we 
want to give a sketch of a systematical way of obtaining nonlinear and nonlocal 
field equations: The usual Schr6dinger equation for a charged particle reads 

0't r 1 
ih Ot 2~ (-ih~-qA)2alr+q~' (1.1) 

whereby the potentials (A, q~) have to obey the Maxwell equations 

IZq~ = -4~rp l 

E]A = - 4 ~ - ] J  (1.2) 

Assuming that the particle is coupled to its own field via charge density O - [ ~ l  ~ 
and current j - ~ * V ~ - ~ V ~ *  and substituting (A, q~) in Eq. (1.1) by the Green's 
function of Eq. (1.2), we get a nonlocal and nonlinear Schr6dinger equation of the 
form: 

0~ h 2 f ih-~+~mA~= Vret(x-y, t,~Tx, Vy)lq~(y)12d3y q~(x), (1.3) 

where Vret contains besides a convolution kernel the first derivations, and the 
contribution - A  2 has been neglected. However, Eq. (1.3) may bear an inconsis- 
tency, as Eq. (1.1) is nonrelativistic and (1.2) is a relativistic equation for the 
four-potential (A, ~). Therefore Eq. (1.3) can only be applied 

a. in the case of static fields (where [] is replaced by A), 
b. when the propagation speed of the field allows a nonrelativistic description. 

A further restriction of Eq. (1.3) is obtained by considering only the Poisson 
equation A~ = -4~p,  because (1.3) now reads 

ih O~+ h~ A* 
g2 

f [,I,(y)l 2 

Ot 2m ='-~ J 
d3y *(x). (1.4) 

This approach of Eq. (1.3) is rather familiar, as by considering the variables x and 
y as co-ordinates in the configuration space and taking �9 as a simple antisym- 
metric product, we obtain the Hartree-Fock (HF) equations, if the self-inter- 
action of each charge is omitted. The HF equations can be treated numerically (as 
often done in theoretical chemistry) with the help of a finite (but arbitrary) basis 
set 

N 
~k = Z Cklq~t, (1.5) 

/=1 

where the coefficients ckt are determined by energy variation (Roothaan pro- 
cedure). The advantages and disadvantages of the approach are well-known; so it 
cannot be applied to systems with very many interacting particles. It appears that 
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field theoretical methods are not yet exhausted, but the description of molecular 
structures by a nonrelativistic, nonlinear field theory cannot be achieved in a 
simple manner and therefore we shall give an analysis of the problem, in which 
way the symmetry of a molecular structure can be established in a self-interacting 
field equation. 

In recent time, a further specification of Eq. (1.3) has been discussed by many 
authors (Ref. [1-8]), the so-called cubic Schr6dinger equation 

h 2 
E ~  + ~ m  2x~ = Ac]~]2~ (Ac = coupling constant), (1.6) 

because this equation bears particle-like or soliton solutions, which may be 
considered as a certain approach to describe an extended particle (e.g. an atom or 
a molecule). A very often discussed soliton solution of Eq. (1.6) is (in one space 
coordinate): 

IE = -h262/2m 
= A sech be : [ A 2  = hbg/mA ~ (1.7) 

because this wave-function is square-integrable (IN*H2 < oo), whereas some other 
solutions of (1.6) are not [7, 8]. It has been tried to consider the soliton solutions as 
stable wave-packets [9] - in the usual quantum theory (linear Schr6dinger equa- 
tion) such a property is only known for the harmonic osci l la tor-but  such an 
interpretation is not quite consistent, because no linear superposition is available 
for Eq. (1.6), and we shall give another interpretation of Eq. (1.6) and its solitonic 
solutions in Sect. 3 of this paper. 
A further critical point of Eq. (1.6) and its solitonic solutions arises, when one 
derives the cubic Schr6dinger equation (1.6) from Eq. (1.3). Assuming a singular 
contact potential V=aca(X-y), (1.3) gets actually the shape of the Eq. (1.6): 

O~[~ ]i 2 f ih O-7+~m kxIr = A~ _ ]XP(y)]2a(x-y) d3y W(x). (1.8) 

However, it should be noted that a singular contact interaction is not quite 
consistent with the conception of an extended particle, and in the nonrelativistic 
domain one has not to consider energies, where a self-interaction a-function is a 
good approach. Therefore we have studied in preceding considerations [7, 8] 
nonlocal generalizations of Eq. (1.8) of the form 

ih 0~+ h 2 
77- ~ Axp = Ac f ]~(y)]2K(ko, x - y) d3y  xlr(x), (1.9) 

which exhibit the property to generate in the local limit (ko-+Oo) the cubic 
Schr6dinger equation (1.8). A very promising family is obtained, when the 
convolution kernel K(ko, x - y) is a Gaussian kernel function 

K2 = Y(ko) exp - k  2 ~ (xj - yi) 2 
i=1 

~C(ko) = k~/ 3/2, (1.10) 
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because the corresponding nonlinear field equation 

O~ h 2 I i h - -+  Aq*=Ac K2(ko, x-y)l'tr(y)[2 d3y ~(x) (1.11) 
Ot 2m 

uniformly converges against the local limit, when ko increases: 

If[K2(k'o,x-y)-K2(ko, x-y)]l*(y)12d3yd3x<e for k;  > ko. (1.12) 

This relation yields a self-interaction, smeared out by a Gaussian distribution 
function, which converges uniformly against the self-interaction of a "point- 
particle" (see also Appendix A). The cubic Schr6dinger equation (1.6) or (1.8) 
cannot be obtained by a local limit procedure of Eqs. (1.3) and (1.4), as an 
electrostatic self-interaction is strongly nonlocal due to the long range. The 
self-interaction term 

,On(x) = I  ~[q~(y)12 d3y 

can be considered as a Hilbert transformation of the density 0 - I"Ir[ 2, which can be 
approximated by an infinite set of two-point Gaussians: 

5H ~ ~=~ c~(ko,~) exp (-k~,,~(~-n=f)l,I~(y)12 d3y} 
~ = ] x - y [ - - - 0  . (1.13) 

The two-point kernel ~:-1 consists of a a-function (for lim ~:--> 0) and Gaussian 
functions with ko, v < 00. 

2. Some Properties and Applications of a Nonlinear Field Equation with 
Gaussian Kernel 

It is clear that the use of a Gaussian kernel K2 (or in the local limit a &kernel) is not 
practicable, when the "exact" problem is given by long-range Coulomb inter- 
actions (Eq. (1.4)), and the Hilbert transformation ~ p(y)[x - y 1-1 d3y would have 
to be approximated by a sequence of Gauss transformations. The Gaussian kernel 
K2 has the advantage to describe an extended particle with an internal self- 
interaction, when ko in Eq. (1.11) is kept finite and chosen suitably for practical 
problems. Such an "extended" particle may be a quasi-particle, consisting of 
many interacting particles, as used in solid-state or nuclear physics. In atomic or 
molecular physics we meet an analogous situation, because we can regard an atom 
as an interacting many electron system, attracted by a nuclear charge, and the total 
system is described by a Schr6dinger equation, derived from Eq. (1.4). Such a 
system can also be described by a nonlocal, self-interacting field of an extended 
particle, where the nonlocal self-interaction must be of much shorter range than 
that given by Eq. (1.4). Such a field is characterized by further degrees of freedom, 
because the excitation of an electron in an atom is now treated as a collective 
excitation of a particle or quasi-particle with an internal structure. There arises the 
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question, in which way Eq. (1.11) can satisfy these requirements in atomic physics, 
as we start with a special two-point kernel. We have already analyzed many 
properties of Eq. (1.11) [7, 8] and therefore we repeat only those results, 
necessary for a discussion of the above question. Eq. (1.11) contains the generat- 
ing function of the Hermite polynomials and therefore the stationary form may be 
written as [7, 8] 

2 ~  t~1+?12+713 ko E q t +  A'tt = h J  �9 ,., ~1 ~2 t~ 3 
X1 X2 X3 

nlnz,n3=O ~ i -  F/2.~ Ft31 
+o0 

• r day [exp { -k2y2}H~(koy~)Hn~(ko ,  y2)H~(koy3)]~(y)12]~(x) .  

(2.1) 

This equation may be formally integrated to yield an anharmonic oscillator 
equation of infinite order: 

E ~  + h ~  = hc ~" ~ a,~,n2,~3(ko)xl ~ x2~2 x3~3 ~ ,  (2.2) 
ttl,n2,n3 =0 

where the coefficients a~,n2,,3(k0) are determined according to Eq, (2.1). Eq. 
(1.11) or (2.1) exhibits for finite ko a finite set of bound states with E < 0  and an 
infinite set of scattering states with E > 0. In Fig. 1, we can see that the Gaussian 
distribution function K2 can be partitioned in a domain A + with positive curvature 
and a domain A_ with negative curvature. In the domain A+ the distribution 
function Ke nearly agrees with an oscillator, whereas in A _ ( ( x  - y)2 > 1/2k02) the 
higher order terms are more relevant. This fact yields an approximation method 
for Eqs. (2.1) and (2.2): The ground state and the lower excited states can be 
calculated by an oscillator approximation (hi + ne + n3-< 2) and the contribution 

Fig. 1. The Gaussian distribution 
function K2(ko, x - y )  and its 
domains with positive (.4+) and 
negative (A_) curvature. At  ~:~ = 
(x - y)2 = 1/2k~ the curvature 
changes sign. The pointed curve 
represents the associated oscillator 

-~r K2 t *~c 
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of the terms with nl + n2 +//3 > 2 can be treated as a perturbation. However, such 
an approach is insufficient for the excited states in the domain A_, where the 
contribution of the terms - x  3 and - x  4 becomes essential. The harmonic oscil- 
lator approximation of Eq. (2.1) can be brought to the form: 

E ~  + ~-~ Aq~ .= ~c[Ao + A l ( x  2 + x 2 + x 2)]~ (2.3) 

and may be solved with standard methods, but one has to be aware ot~ thatA0 and 
A1 depend on the wavefunction according to' Eq. (2.1) and, in particular, the 
eigenfrequency w(A~Ac = (m/2)w 2) is not a free parameter, because we have a 
self-interacting oscillator, where o) has to be determined for each eigenstate of Eq. 
(2.3) in the domain A+. We do not obtain the energy levels En = hoJ (n + �89 of a free 
oscillator as eigenvalues, but without an explicit calculation of the levels we can 
make use of group theory to classify the eigenstates in A+. It is well-known that a 
3-dimensional harmonic oscillator in quantum theory can be classified by SU3 (see 
also Appendix B). But this symmetry is also present in Eq. (1.1 l) or (2.1) and we 
shall return to this problem. It is also possible to classify Eq. (2.3) according to the 
angular momentum by the introduction of the spherical harmonics 

E ~ +  &,~,o't~ = ~.c(Ao+A~r2)~ (2.4) 

and making use of the separation 

",t r = f(r)Y'{'(cos O, ~),  (2.5) 

but then we do not get an information on the levels of the radial function f(r) in a 
simple manner and therefore we do not discuss here this classification. The use of a 
SU3-classification exhibits the advantage that we only need consider Eq. (2.3) in 
one space coordinate 

h a d 2 
Eq~ + 2---m dx ~ q~ = hc (A~  A~x2)~ '  (2.6) 

because this symmetry group immediately provides an information about the 
multiplet structure, when 3 oscillators are combined. The harmonic oscillator 
approach (2.3) makes also apparent the already indicated physical interpretation 
of Eq. (1.11): The ground state and the lower excited states represent eigenstates 
of an extended particle (described by a nonlocal self-interacting field), which may 
undergo discrete deformations according to Hooke's law. In molecular (but also in 
solid-state and nuclear) physics we want to relate excited states of particles with an 
internal structure to collective excitations. The appliction of the kernel K2, 
exhibiting invariance against rotations (SO3), is, however, not practicable, when 
SO3 is strongly perturbed (e.g. for molecules). Some tests (Table 1) have made 
clear that the above approach works for the outermost electrons of atoms, where 
the s-character is dominating. For the ground state of Eq. (2.6) we make the ansatz 

r 1 2 2,, -~ 
~o =X(,Xo) exp t-~aoX ) 

]lq%[lz = 1 ~?r = 2O~o/42-~ /"  (2.7) 
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The two parameters k0 and ac can be chosen arbitrarily, but they should be related 
to properties, which seem reasonable for the specific atom. This request yields 
,~ = -Zeffe 2 (effective charge of the valence electron) and k0 - rec ip roca l  atomic 
radius. The subsequent excited states are described by 

' I ' . = X ( , n ) h r . ( ~ . x )  , ~ 2 2 ,  exp ( - g c e , x ) ,  n - 1, 2 . . . .  , (2.8) 

where o n -  wn is different for each eigenstate. Thus we obtain for the ground 
state: 

ko/~cCeo h20~O 2 } 
E~ = GGT.0  + 2m 

a--2~' 6 2 " (2.9) 
~-A c/~ 0 D"/ 0~20 (c~ + k2) 3 - - -  

7rh 4 

By setting Uo = O~o 2 we have to solve a polynomial of degree 4. With respect to the 
first excited state we have to solve a polynomial of degree 6: 

3o2h2 2 3 AckoX1 (al)F(g) 
E l -  - -  + 2m 4-~(a~ + k2) 3/2' 

2_2,6(2k02 c2)2 
m A c K O  2 2 

Og 1 (Ol 1 +ko2) 5 - 7rh 4 

y ~  3 3 
= - d F ( 9  

(2.10) 

In similar fashion we obtain polynomials of higher degree, which have to be solved 
for the subsequent excited states, but we do not report  them, because on the one 
side these polynomials are simple problems in numerical mathematics and, on the 
other side, for ko 1 ~  10 8 -  10 7 cm -1 we have only a few excited states in the 
domain A+. For ,~c > 0 Eq. (1.11) yields only scattering states and therefore we 
have always to put ,~c < 0  in order to justify the approximation (2.3). But 
nevertheless we obtain for (2.10) and (2.9) besides one bound state many complex 
solutions related to scattering states, which are not very meaningful in an 
Oscillator approximation. The ground state of (2.3) results from 3E0 of Eq. (2.9) in 
order to get the SU3-singlet. So far we have verified it is reasonable to identify Eo 
of (2.3) with the ionization energy -To of the outermost electron of an atom. It is 
possible to use k0 and )to as fitting parameters,  but they should have the discussed 
magnitude. Then the question arises how the lower excited states agree with the 
experimental results. We have used k0 and Ac according to the mentioned 
proposition without further variation. By that, we have verified in the case of some 
atoms (Table 1) that the procedure works well for atoms, where the outermost 
electron is described by an s-funtion (Li, Be, Na, K, Mg, Ca, etc.), but it does not 
work in the case of H, He and all atoms, where the outermost electrons are 
p-functions (or d-functions). For H and He, the first excited states lie already in the 
domain A_, and, although the corresponding electrons are described by s- 
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Table 1. It has been throughout assumed ko = 1/2ro and 1c = - Z ~ f  e2(ro is the orbit radius 
of the outermost electron). The spectral data and further references may be found in Ref. 
[20]. The excited states of H and He lie in the domain A_ ,  hence an oscillator approach does 
not work 

Ground state a Excited states 

H exp ls, 2S~/2 109630 
cal 98600 

He exp ls, 1So 198305 
cal 170000 

2s, 2Sl/2 43486 2p, 2P1/2 28582 3s, 2S1] z 16280 exp 
Li 

cal 41750 27410 18520 
Na exp 3s, 2S1/2 41449 3p, 2Pt/2 24493 4s, 2S1/2 15709 

cal 40180 24360 17310 
K exp 4s, 2S1/2 35009 4p, 2P1/2 22023 5s, 2S1/2 13982 

cal 34870 22110 14480 
Rb exp 5s, 2S1/2 33689 5p, 2P1/2 21110 6s, 2S1/2 13557 

cal 33610 21130 14270 
Be exp 2s, 1So 75194 2p, 1P1 32629 

cal 77560 36890 
Mg exp 3s, ISo 61672 3p, 1P 1 26117 

cal 62010 28470 
Ca exp 4s, 1So 49304 4p, 1P 1 25652 3d, 1D 2 27455 

cal 50120 27460 27130 
Sr exp 5s, 1So 45925 5p, 1P1 24227 4d, aD z 25775 

cal 45980 24420 25625 

All energy terms in cm -a. 

functions, we should note that these electrons "see" the pure Coulomb potential 
of the nucleus. When the outermost electrons are not described by s-functions, we 
have to use a more general kernel than (1,10). In the above cases, where the 
formalism works, the electrons of the outermost shell "see" only a core with an 
effective potential. 

A further interesting aspect of Eqs. (2.3) amd (1.11) is that we do not obtain the 
energy spectrum of the harmonic oscillator with equidistant energy levels. When 
one considers the term scheme of the atoms and molecules (the H atom inclusive ), 
it is easy to see that in the case of bound states such a situation is indeed realized. 
We should point out that already the energy spectrum of the self-interacting 
oscillator (2.3), where the lack of equidistant energy levels is the most significant 
property, can only be obtained by an anharmonic, but free oscillator obeying the 
following Schr6dinger equation 

h2 02 (m(.o2x2+'}/x3q-~x4)~t. (2.11) 
E ~ + 2-- ~ O x----7 ~ = -~ 

Now the parameters o~0, y, and ~ do not depend on the wavefunction. Some 
further properties of Eq. (2.3) are discussed in the appendix B. 



Atoms and Molecules as Self-Interacting Field 187 

3. Generalization of the Gaussian Kernel/s and the Relationship to 
Symmetry Principles 

In this section, we discuss the extension of the Gaussian kernel K2 to arbitrary 
convolution kernel functions and the symmetry principles involved. Thereby we 
find a close relationship to the concept of chirality functions, proposed by Ruch et 
aI. [10]. A further aspect will be the physical interpretation, as there is some 
connection with the Ginzburg-Landau theory of superconductivity, and an 
outlook to other disciplines. 

3.1. The Application of Hermite Kernels 

Eq. (1.11) and its approximate version (2.3) can only be applied to systems with 
rotation invariance SO3, and the eigenstates are classified by the unitary group 
SU3, whereby it should be noted that the rotation group SO3 is a little group of 
SU3. Thus the group SO3 is established by a unitary representation of a continuous 
group (SU3). One can hope to describe with such a symmetry group also certain 
discrete point groups (e.g. Td): Excitations of the outermost electron (from the 
HOMO of e.g. CH4) are considered as collective excitations of an extended 
particle, but this seems to be a rather rough approach for the discrete Td symmetry 
being a little group of SO3. In molecules (and nuclei) we do not know the very 
complicated potential of the outer electrons (or nucleons), but we assume that it 
stands in a close relationship with the spatial symmetry. Thus the following 
proposition may lead to a clarification of the situation: For this purpose, we 
consider a two-atomic molecule, which exhibits a nonvanishing static dipole 
moment. The spatial symmetry is C2v, and the simplest manner to take account of 
this request is given by the following equation 

h 2 I_ *~ E'fir + ~ m  m Afir = Ac Hi(No, x3 - y3)K2(/o, x - y)lfir(y)l 2 d3y fir(x). (3.1) 
o o  

Hl(ko, x - Y3) is the first Hermite polynomial, resulting from (O/Ox3)K2(ko, x - y). 
By that, the dipole is positioned in the x3-axis, whereas in the (xl -Xz)-plane the 
rotation invariance (SO2) is still present, and the eigenstates of (3.1) are charac- 
terized by the symmetry group SU2. A completely heteropolar two-atomic 
molecule, establishing also Czv-symmetry, can be described by the ansatz: 

h a r 
Efir + ~--- m Afir = ac J_~ H2(ko, x3-y3)Kzlfir(y)l z d3y fir(x). (3.2) 

However, we should note that these two realizations of Czv are indeed very simple, 
as the two limit cases (polar and heteropolar bond) are also realized in the 
following nonlinear and nonlocal field equation: 

h 2 {'+~ 
EW + ~m A~F = 2c J_ ~ ,~0 P"H"(k~ x3 - Y3)KzI~P(Y)I2d3Y~P(x)" (3.3) 

The heteropolar character is guaranteed by taking account only of Pn with even n, 
and, on the other hand, a strictly polar character is present for all odd n. With 
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respect to Eq. (3.3) we are able to make the following statement: The arbitrary 
convolution kernel K in Eq. (1.9) has been expanded in terms of a Gaussian kernel 
K2 and Hermite polynomials Hn, whereby each Hermite polynomial contains the 
expression k02 (x3 - y3) as an argument. In the above case, the rotation invariance 
(SO2) is preserved. The extension to 3 dimensions, where neither a spatial 
symmetry (SO3 or a little group of SO3) nor a unitary representation of SU3 or one 
of its little groups is established in the space of the eigenstates of (1.9), is given by 
the following equation: 

h 2 ~ f_+~ E*+~mm A'tr=Ac ~ ~__0Pnj Hn(/o, xj-yj)K2l,I,(y)l 2 d3y (3.4) 
j = l  n co  

Hereby we have restricted ourselves to a stationary version of the nonlocal and 
nonlinear Schr6dinger equation. The time-dependent version of (3.4) must 
inevitably be taken into account, when time-dependent external fields are 
present: 

ih O~ Ve~- -  1 0-~-- ~m (-ihV - qAex)2* 

= &  F[ ~ P~j(t) Hn(ko, xi-yj)K2l'Iffy, t)12d3y*(x,t). (3,5) 
j~ l  n=0 oo 

However, it appears that such a difficult equation, describing transitions between 
different eigenstates, is not very interesting in the general form (3.5), as it does not 
yet exhibit specific symmetries for the characterization of the corresponding 
transitions, and we shall have to return to this problem after further analysis of Eq. 
(3.4). In order to reduce the difficulties for obtaining any information on Eq. (3.4), 
it is necessary to make essential simplifications, e.g. those given by Eq. (3.1) or 
(3.2). This means that any molecule, described here by a self-interacting field with 
an internal structure and belonging to a certain symmetry class, has to be treated 
with a minimal number of Hermite polynomials H.  (ko, xj - y j) being necessary for 
the representation of the corresponding class. Thus a molecule with Td symmetry 
may be treated by the following convolution kernel: 

KT~ = {P01.~.~ + PllH1P12H2 + P11HIP13H1 + P12HIP13H1 

+ H2(P21 + P22 + P23)}K2 (3.6) 

Hereby mean P11HIP12H1 = PllHl(ko, x t -  y1)P12Hffko, x2 -  y2) and H2P23 = 
H2(ko, x3 -  Y3)P23, etc. If Ta represents an exact realization of the spatial sym- 
metry of a molecule, the coefficients P~i of Eq. (3.6) must not be chosen 
arbitrarily, and the following identities must hold: 

P01 = P02 = P03; P l l  = P12 = P13; P21 -'- P22 = P23. 

Nevertheless, (3.6) is only an approach for Ta, because we can add higher order 
Hermite polynomials, incorporating also representations of the Td group. The 
only difficulty, arising from the higher order polynomials, is the finding of proper 
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solutions. However, the conception to consider a molecule as an extended particle 
analogous to the quasi-particle concept in other domains of physics, being 
described by a self-interacting field with an internal structure, underlines the 
spatial symmetry of a particle as the main starting-point for all other informations. 
This classification according to the symmetry immediately provides informations 
about some properties of the molecule. So the Hermite convolution kernel H1 is 
related to a dipole, whereas H2 yields a quadrupole, etc. These spatial symmetries 
must be reflected in the symmetry classification of the eigenstates of the cor- 
responding field equation being always a specific form of Eq. (3.4). The continu- 
ous spatial groups SO3 and SO2 exhibit a correspondence to the unitary groups 
SUs and SU2. A difficile problem, which we are not yet able to answer, is the 
finding of a correspondence between a discrete point group (e.g. T~) and an 
equivalent unitary representation in the space of the eigenstates. However, we 
should note that there exists a quite similar approach to such a problem, 
developed by Ruch et al. [10, 11], namely the concept of chirality functions. 
According to the contention of this concept, a molecular structure is described by 
an appropriate function, reflecting some molecular properties, being related to 
the corresponding symmetry class. So far as we can see, the conception of chirality 
function has not been developed by the authors [10] on the basis of field theory, 
but we should note that the principles presented here represent a field theoretic 
realization (or generalization) of Ruch's conception. In the case of the dipole or 
quadrupole moment etc., we have directly verified the relationship to the above 
concept. If one considers some mathematical details in Ref. [10, 11], further 
similarities may be found. So the chirality functions are approached by the 
minimal order of proper polynomials, reflecting the discrete point group of the 
molecule, and we have seen that this assumption is also useful in our field theoretic 
treatment. The fact that we have made use of Hermite convolution kernel instead 
of usual polynomials in order to give a representation of the internal symmetry, is 
not of importance, as every Hermite polynomial is a linear combination of usual 
polynomials, and thus Eq. (3.4) is also equivalent to 

J" . .  (E+ mm i=1 n=O 

On the other hand, it does not appear that symmetry princples or chirality 
functions have a relevant meaning, when a molecule is treated numerically on the 
basis of (1.4) and (1.5). 

3.2. Mathematical Aspects of Hermite Kernels 

Besides the symmetry principle, which represents a rather heuristic, but powerful 
motivation for the formulation of a nonlinear field equation describing an internal 
structure of an extended particle, there is another starting-point leading to some 
mathematical aspects of the problem: According to Hund [12] we can consider 
atoms and molecules as classical fields. Because of the short range of the chemical 
valence forces (~10 -8 cm) the valence electrons of the atoms can be related to 
particle-like interactions, where the potential should obey a stationary Klein- 
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Gordon equation 

(A-  ko2)CPKG = m2q~KG (ko 1 = 10 -8 cm), (3.8) 

yielding a Youkawa potential of the form 
- -1  q~KG--r exp (-kor). (3.9) 

The atoms (or molecules) should obey the strictly classical equation of motion 

l (OW'I2 OW 
2m ~ Ox / +q~K~ Ot (3.10) 

In our approach, we have modified the singular behaviour of (3.9) for r -~ 0, which 
may become crucial for outer valence electrons, by a Gaussian distribution 
function, and instead of a classical equation we use the Schr/Sdinger equation 

~ 2 =  e _ y)[~(y),2 d3y } +co . (3.11) 
r hc J_~ Kz(ko, x 

However, the operator d2, of which the Green's function is given by K~(k0, x - y), 
yielding the "potential" equation 

= - p ( x )  =  cl*(x)l = 
(3.12) 

q-oo 

qo(X) = ;_ Gse2(x-y)p(y) d3y 
c~3 

is not yet defined. We show that d2 is given by 

sq2 = exp {- k 0 2 A} 

= 1 _ko2 k -4 0 2 
1! h+-~-.  A - + . . . .  (3.13) 

In a rather good approach (3.13) contains the Klein-Gordon equation ko2(1- 
ko 2 A)r = -k2p(x). The Fourier transformation of q~ is given by 

/ *  -t- cr 

= W [  f ( l )  exp (iAx) d3h. (3.14) 
3- -  co 

Now we form 

_. {k~ k-4A4 d3h t 

aC2~p(x) = WJ (1 + koah .2+~.~"  +" �9 �9 +) 

exp (i,lx)f(2t) d3A = -p(x) 
= WJ exp exp {iax}f(a) (3.15) 

One should compare this result with the Fourier transform of a Gauss trans- 
formation [7], as one observes a complete identity. In order to show this property 
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we calculate ~ via Green's  function 

q~(x) = W [  f ( a )  exp {iAx} d3a 

=,k/" f f Gsgz(X- y) exp {koe~t e + i~y}f(~ ) d3y dak. (3.16) 

By that, we obtain: 

exp {iAx} = [ G~ 2 �9 exp {ko2a 2 + iay} d3y  
a (k~ 3 } . (3.17) 

Gin2 = K2 = \~-~] exp {-k2o(X - 5 )  2} 

It follows from the preceding considerations that the kernel K2 does not satisfy all 
presumptions with respect to a resolution of the problem to describe any extended 
particle as a self-interacting field with a proper  kernel function. We have already 
verified that the use of K2 is not sufficient for those atoms, where the outermost 
electron is related to a p orbital. When one regards the effective potential of a 
valence electron in a molecule (in the HF approximation this electron is related to 
the HOMO),  then the situation is that one does not know this effective potential. 
The only available informations a r e - s o  far we have already s t a t e d - t h e  sym- 
metry of the molecule (clearly the potential depends on it) and the short-range 
interaction of the valence electron. This situation is quite analogous to crystals, 
where Verf is completely unknown until its invariance against proper  translations 

/ 3 \ 
exp I • ~x)Verf(x - y ) =  Ver,(x - y -4- a) (3.18) 

(a is a suitable length). From Eq. (3.18) follows that the translation operator  
exp (• O/Ox) has to commute with a certain operator  da~(3/0x), of which the 
Green's  function is Verf(x - y). in both cases, molecules and solids, it is therefore 
reasonable to start with an arbitrary operator  function ag(O/3x), being formally 
considered as an abbreviation of a power series of differential operators 

ag/= amk , (3.19) 
k = l  m = 0  " O X k  1 " " " O X k  m 

and, in a further step, to put some constraints to (3.19) reflecting the symmetry of 
the problem. Using the power series of sr (3.13) and multiplying on the left hand 
side of d2  linear combinations of differential operators of arbitrary order, we are 
able to represent any A (which may be a collection of differential operators of 
infinite order) by a proper  choice of the coefficients Bni: 

3 0 m O'* 
~ =  ~ ~ am, k = ~ ~ Bnj-~Xj~2. (3.20) 

k = l  m = 0  O X k l  �9 �9 �9 O X k m  n = 0  j = l  

In the following, we shall show that we can use/42 = G~r to construct the Green 's  
function G~ of any operator  sg, if the coefficients am,k o r  Bnj do not depend on the 
coordinates Xk themselves. The potential function q~ in Eq. (3.11) now satisfies the 
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equations 

J ~  = - o  = A I,~(x)l ~ ] 

q~ = f O~(x,  y)p(y)  d3yJ ~" 

and therefore we put 

d 2 ~  = - x ( x )  ~. 
( X ( x ) # p ( x ) ,  if,if2 # d )  

(3.20a) 

(3.20b) 

For the sake of simplicity we restrict ourselves to one space coordinate, as the 
extension to 3 dimensions is straightforward. Because the identity 

= J K2x(y)dy -- J o  o(y)ay (3.20c) 
holds, we obtain by multiplication of Eq. (3.20c) with J and ~2 and taking 
account of the relation 

J2K2 = J G ~  = - 6 ( x  - y) 

the relation 

8 n 
B , - - X ( X ) = p ( x ) .  (3.20d) 

n=0 OX n 

Now we form 

3 
s~2q~ = - X ( x )  = sgzG.~ n~o= Bn ,--~, X(Y)oy  dy, (3.20e) 

from which results by partial integration 

O n 
K2(ko, x - y ) =  Y~ B,~-~ O~(x, y). (3.21) 

r l=0  o x  

Because K2 represents a convolution kernel, which is obtained by differentiations 
of G~, the kernel G~(x,  y) has also to be a convolution kernel, so far the 
coefficients Bn are independent of x. In the following, we shall tacitly assume the 
validity of this fact, since we are able now to expand G~ in terms of K2 and 
Hermite polynomials Hn (ko, x - y): 

0 n 
G a ( x - y ) =  ~ P,,o-~K2, (3.21a) 

n = 0  

where 
0 n 

H,(ko ,  x - y) ~ Ox---~ K2(ko, x - y). 

Because of the relations 

�9 ~ 2 K 2  = - 6  (x  - y )  ] 

3" 0 m 
Jc~= E e.BmO-fnOx~.~2K2=-a(x-y), 

n , m  ~ 0  
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the coefficients Pn have to satisfy 

PoBo = 1, B~Po + Bm-IP1 +" �9 �9 + BoPn 
=0,  (m = 1 , 2 , 3 , . .  ) 

n = 1 , 2 , 3 ,  "/ 
(3.21b) 

e.g. 
P0 = Bo 1 ] 

t 
P1 = -B1 �9 Bo 2 

P2 = - B 2 "  B o  2 + B  2 �9 B o  3 (3.21c) 

P3 = - B 3 "  B o  2 + 2 B l B 2 "  B o  3 - B 3 B o  4 

P4 --- - B 4 B o  2 - 3 B  2B2Bo4 + (2B1B3 + B )Bo 3 + B i l B o  

The relation (3.2 lb) provides a way to construct all P,, if the corresponding B~ are 
known, but apart from special cases the sequence of the coefficients P,  remains 
infinite, even if the sequence of the Bn is finite. It follows from (3.21c) that the low 
order coefficients Bo, B1, B2 should be considerable (in particular B0) in order to 
give rise to very small P,, where n is a very large number. In the case of 3 
dimensions, (3.21a) assumes the shape 

3 

G~= ~ I71 P~j" Hn(ko, x i -y i )Kz(ko,  x - y ) .  (3.21d) 
n=0 j = l  

These results might be regarded as a justification for our ansatz (3.4), where we 
have used two-point Hermite functions in order to obtain a generalization of Eq. 
(1.11). t towever, we should be aware that with respect to a practical problem we 
are not blessed with all informations being necessary for a fixation of each P,j (or 
B~j). We have to restrict ourselves to those P~i, being relevant for the symmetry 
adaption. Besides this constraint the remaining coefficients P-i( r 0) may serve as 
fitting parameters (similar like Ac and ko). It is clear that we are able to expand 
every Green's function G~(x - y) in terms of Gaussians, multiplied with Hermite 
polynomials due to the completeness relation, but such an expansion has not to be 
useful in every case, e.g. when a / =  zX, and the expansion (3.21) is then reasonable, 
when the contributions of P,j with very great n are negligible. This presumption is 
satisfied for short-range fields (chemical forces are of short range or particle-like, 
when one treats interactions as mediated by the outermost electrons). Hence, ko 1 
should stand in a close relationship with the range of the interaction. So far we are 
obliged to use more general kernels than the Gaussian kernel K2 in Eq. (1.11), it 
is, apart from special cases, no longer possible to classify the corresponding 
eigenstates by SU3 (or a perturbed SU3), as the appearance of discrete spatial 
symmetries expressed by the Hermite kernels Hn (k0, x i - y j )  quenches the exis- 
tence of SU3. This fact is easy to see: 

d2  incorporates an operator, which can be represented by the generators of SU3: 

exp ( - k o  2A) =exp - i ~  l ~ + + E \ =1 ajk ) ( E  = ho,), 

(3.22) 
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(the generators of SU3 are stated in Appendix B). In order to give a sketch for 
obtaining Eq. (3.22), we should recall that exp (-koQx) follows from 

J 2  = exp (+/~2/h2k2)}, 
l 

(3.23) 

and according to appendix B the momentum operator ~ can be expressed in terms 
of creation and annihilation operators 

,/2--h-d 
,~k = (~k --g~) 2----7-- (3.24) 

The Hermite Kernels H,(ko, x j -y j )  can easily be written in terms of ~k and ~ ,  
but if we do so, we find that the generators of SU3 do not commute with S~(~k, ~ ) .  

3.3. General Discussion and an Outlook to other Disciplines 

The kernel K2 stands in a close relationship with well elaborated symmetry 
principles, which provide interesting informations referring to the classification of 
the eigenstates and being of interest also by taking account of anharmonic terms of 
Eq. (2.1). But with respect to Eq. (3.4), where we are, in general, not able to use 
symmetry principles for the characterization of the solutions, it is evident that we 
are confronted with the treatment of a self-interacting, highly anharmonic oscil- 
lator, even if we approximate K2 according to Eq. (2.3). Simple perturbation 
theory should, however, be avoided, and it is therefore stimulating that the 
treatment of highly anharmonic oscillators in quantum theory is attacked by 
rather sophisticated methods, providing informations about the complete spec- 
trum of energy levels. It appears that these recent developments (see Ref. 
[21-25]) may have a dominating importance with respect to integration methods 
in self-interacting field equations. It is not desirable to use only purely numerical 
methods, e.g. the variation principle of Ritz: 

aE Z = 

Hereby means {~} a finite set of N arbitrary basis functions (see also Eq. (1.5)). If 
we would perform numerical calculations on the basis of energy variation, the 
effort would be much smaller than in a many-particle HF equation, as we treat a 
many-particle problem in a quite different way: we regard such a problem as a 
self-interacting field for an extended particle with internal sttucture, and such a 
conception has been regarded in superconductivity by Bogoljubov, where a 
many-particle problem is successfully described by a quasi-particle. 

It is rather trivial (see Appendix C) that such a field theoretical method of treating 
a many-particle system (e.g. a molecule) as an extended particle (or quasi-particle) 
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with further internal degrees of freedom (e.g. collective excitations) cannot 
provide information on the inner shell electrons : this is a consequence of the fact 
that even a purely numerical approach of Eq. (3.5) is much easier than a numerical 
solution of the HF equations. Thus the methods under consideration resemble the 
semi-empirical MO methods, but those suffer sometimes a lack of consistency: 
They treat only the outermost electrons with the MO approach by neglecting the 
integrals of the inner shell electrons without being aware of, that the effective 
potential for the valence electrons is far away from Coulomb potentials. The 
relationship to ligand field theory [26, 27] is much closer, because one considers 
here a one-particle Schr6dinger equation for the central ion, whereby the effective 
potential is additionally perturbed by the multipole contributions of the ligands (in 
practice: dipole approximation). It appears, that the formalism presented in this 
paper, is a certain extension of ligand field theory, as the total system "central 
atom (or ion) + ligands" is treated as the quasi-particle and the effective two-point 
potential is induced by the spatial symmetry of the total system. However, the 
above mentioned connection with superconductivity is more apparent as stated 
till now, since the cubic Schr6dinger equation (1.6) is equivalent to the Ginzburg- 
Landau equation [28, 29, 30], because the free energy reads: 

F = f d3x (cet*(x)t2+fll*(x)14+ 3,17"12). (3.25) 

Performing 8F = 0 with respect to ** yields Eq. (1.6). 

This fact is remarkable, as it provides a key for the physical interpretation of the 
nonlinear field equations under consideration. The soliton solution (1.7) can be 
associated with a collective excitation of Cooper pairs (quasi-particles). These 
quasi-particles consist of marly interacting particles, and according to Feynman 
[30] the wavefunction has in such a situation a direct physical meaning: In the case 
of the Bose condensation, as it is realized in superconductivity, the one particle 
current becomes a real electric current, formed by a many Boson system, and the 
wavefunction acquires a real physical significance, when very many Bosons are in 
the same state. On the other side, the Ginzburg-Landau theory can also be 
considered as a classical field theory, and Feynman's interpretation of the 
wavefunction, which may be realized by solitonic solutions, leads directly to a 
classical field theory. The wavefunction is then associated with a phase transition, 
as it is actually realized in superconductivity. Hence, Eqs. (1.11), (3.4), and (3.5) 
may be interpreted in the same sense as Eq. (3.25), since they represent general- 
izations of it: We may either consider them as field equations for extended 
particles with an internal structure, and deformations incorporate a further degree 
of freedom, or (without probability interpretation of t*t 2) as phase transitions of 
structurized compounds. The presence of t ime-dependent external fields in Eq. 
(3.5) has then to be associated with changes in the thermodynamical phase(s), 
induced by external fields, and the internal structure has to undergo modifications, 
since P,,i depends on time. In this sense, chemical processes can be regarded in the 
framework of a classical field theory. When the structure of spatial extension of 
the constituents becomes irrelevant, it may become favourable to pass to the local 
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limit of eqs. (3.4) and (3.5): 

ih O~_~__ Vex,It_ ~ (-ihV - q~ex(t))2~ 
ot 2m 

=A1 ~I Phi(t) Hn(ko, xi-yi)K2l~(Y)le d3y Xtr(x) 
j= l  n = u  

=A ~ Pnj(t) I,(x)l 2 xtt(x) (k0~oo). (3.26) 
/=1 n = v  

By that, it may appear that the extended particles (or quasi-particles) become 
completely structureless. This is, however, not true, because the extended multi- 
poles shrink to "point-multipoles" (e.g. the term Hi(k0, x3-Y3), related to an 
extended dipole, now becomes a point-dipole). It should once again be 
emphasized that even by taking the local limit (k0-~ oo), we are restricted in 
practical problems to a finite order of derivatives of the density [gt(x)]2 in Eq. 
(3.26) according to our request that a proper choice of the weight factors P~j has to 
reflect the symmetry of the molecules. But in view of the enormous problems of 
the ab initio methods to describe thermodynamical processes, it may be promising 
to consider field theoretical methods with internal structures being generaliza- 
tions of the Ginzburg-Landau theory. 

Although we have till now considered problems of molecular and solid-state 
physics, it is clear that the methods may find also applications in other domains, 
when k0 and & are appropriately chosen. Though in nuclear physics oscillator 
models and symmetry principles (e.g. SU3) are often used, and there have been 
many attempts to describe the meson clouds of nucleons by Gaussians (as 
form-factors) [30-33-1. So far as we could verify, models of this kind go back to a 
remarkable paper of Heisenberg [31], who described the nuclear shells by 
oscillators and the short-range interactions between the nucleons by Gaussians. 

In this connection it is justified to note that the formalism presented here may lead 
to some insights with reference to the methodology in this domain: Assuming 
ko 1 ~10-13cm, then J2  is to a rather good approximation 1 -  koZA (the higher 
order contributions are small, but they prevent a singular behaviour), and the 
elimination of the potential of strong interaction yields Eq. (1.11) or Eq. (A.6). On 
the other side, Eq. (1.11) can be approximated to a certain extent by oscillators. 
However, by keeping in mind the Ginzburg-Landau theory of phase transitions 
for superconductivity, there is some reason that for proper k0 and Ac (strong 
interactions) we are able to describe phase transitions in the domain of a many 
nucleon system (plasma physics). Furthermore, the problem of an extended 
particle with internal structure has become a main object in particle physics, and 
even nonrelativistic quark models play an important role (see Ref. [18, 19, 
34-36], where further references may be found). It should be noted that the field 
theoretical means presented in this paper may also provide an access to some 
problems of particle physics. By that, we observe a possibility to make use of 
nonlinear and nonlocal generalizations of the Schr6dinger equation in many 
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disciplines. This fact may incorporate a contribution to overcome the occasionally 
undesirable tendency of too strong a specialization of some disciplines. 

A. Appendix: Gauss Transformation of Polynomials 

Many mathematical properties of a Gauss transformation can be derived from the 
consideration of a polynomial f~ (y) --- y~ as test function, yielding the evaluation 
of the following expression: 

f ) ~  ko ~ ( ~ ) ~  --7~-Fx ~-i (~_1_)(1+(_-1)!'~ 
oo Y"K2(k~ dy=~i=o  "'o 2 ]" (A.1) 

Now we make use of a well-known theorem of Weierstrass, according to which 
every (L-measurable) function g (y) can be uniformly approached by an infinite set 
of polynomials. In the following, we identify g(y) with the semi-definite function 

~, b,y"=g(y)=lW(y)laeO forly[<oo ] n=0 / 
Nr(y)]2=0 forlimly]~oc 

(A.2) 

The substitution of (A.1) into (A.2) yields: 

ko x 
: U ; - r r  7 ,' ~ i , ' J  

oo j = O  " ' 0  

= I . (x ) l  2 + h(ko, x/ I (A.3) 
( j = o )  ( j > o )  

This expression can also be written in the form 

- -  ~-. �9 �9 + Tyro) I~(y)]=Ka dy : I,~(x)l=~ 4k02 Ox 2 . (A.4) 

rj(ko) - ~:o~Jo~l*(x)l~/ox~ 

With the help of (A.4) we can verify that the Gauss transformation of the 
nonlinear term of Eq. (1.11) uniformly converges against the local limit (ko ~ oo): 

ffl'tr(y)I2[K2(k'o,x-y)-K2(ko, x-y)]dydx (k~ > ko) t 

f �88 1 1)fozl*(x)12dx = [I,I,(x)l 2-/ ,I ,(x)123 dx  + ~o  2 /-~ ~x 2 

+" "+ f [Ti(k'o)-Tj(ko)]dx<e forproperj, k;, ko 

From 

(A.5) 

(A.4) and (A.5) results that the nonlinear Schr6dinger equation with 
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Gaussian kernel (1.11) can also be written in the form 

.. 0~ fi2 
~n - ~ - + ~ m  •  = Z~ f K21'l~(y)[ 2 d3y 'u 

; ac [,~(x)12,I , + ~ {Al'I'(x)12)* 

Ac {Anlg,(x)[2}~(n > 1). 
+ ' "  "+  - k~---; 

(A.6) 

This is rather interesting with respect to a proposal of Mielnik [13] to generalize 
the usual Schr6dinger equation such that it contains besides the nonlinear term 
~1~12~, discussed by the authors [1-6], a term proportional to the derivative 
~Al~(x)[ 2. Mielnik's proposal, which is based on some considerations on a 
generalization of the theory of measurement process, can also be derived from 
(A.6), when ko is sufficiently great, but not yet infinite, because the contributions 
of the higher order derivatives of the density ]~(x)] 2 become very small (e.g. 
ko 1 ~ 10 -13 cm). 

B. Appendix: The Conception of Oscillators in Molecular Systems 

Coupled harmonic oscillators are widely used in many disciplines, as the quan- 
tization of a Bose field, obeying a linear wave equation of the form 

[] q = 0 (B. 1) 

(e.g. photons, phonons), is achieved by a treatment of an infinite set of oscillators 
via SchrSdinger equation. However, in the last decade the consideration of 
anharmonic oscillators has become more and more actual with respect to realistic 
transport phenomena in solids, and this fact stands in a close relationship to the 
nonlocal Schr6dinger Eq. (1.11), and already an oscillator approach with self- 
interaction incorporates in reality a Schr6dinger equation of an anharmonic 
oscillator (2.11). In the domain of molecular systems there have been many 
attempts to use ocillator concepts for the description of dynamical processes 
[14, 15], and, in particular, Hartmann et al. [14] first considered electric circuits in 
connection with ~r-electron systems. The relationship between electric oscillators 
and molecular processes is actually much closer, since one may regard any state as 
a certain charge distribution in a capacitance, and the transition between different 
eigenstates of a molecule as a current, related to an inductivitance. Such a 
transition between different states of a molecule now is treated as a collective 
excitation in a circuit (or system of coupled circuits), and we can also verify a close 
connection with the field theory, developed in the preceding sections, according to 
which an extended particle is described by a self-interacting field and excited 
states must be viewed as collective excitations. Because we can also verify the 
symmetry principles in an apparent way, we shall discuss here 3 circuits (see Fig. 
2), which may be coupled via a mutual inductivitance M. The Lagrangian of the 3 
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Fig. 2. 3 identical electric circuits with L = inductivitance 
and C= capacitance. The space of eigenstates, being 
classified by SU3 multiplets for M = 0 and by SU2 for M r O, 
is defined on the charge space 

circuits reads:  

s /L .~ M 

In o rder  to show the symmet ry  propert ies  of  (B.2) we consider first the case 
wi thout  magnet ic  interact ion (M -- 0). The  canonically conjugate  m o m e n t u m  is 
given by 

OL = LOk ( = flux) (B.3) 
= 00k 

and therefore  the Hami l ton ian  becomes  (0) 2 = 1 /LC)  

H= ~ (P~/2L+Lw~o 2) (B.4) 
k = l  2 

The canonical  commuta t ion  relations get  the shape 

h 
~k~l - ~l~k = -- &l (B.5) 

z 

(electric charge and magnet ic  flux are conjugate  variables). The  solution of the 
Schr6dinger  equat ion  related to (B.4) and (B.5) is wel l -known;  we have only to 
take notice that  the wavefunct ion  is now defined in the charge space: 

~k ~ - i h  O/OOk ] 

0 2 L 2 2 t" (B.6) 
2L  k=, k=, 

In o rder  to get  the genera tors  of SUB, we pe r fo rm the following substitutions 

= L/GT o + , } 
obeying  " (B.7) 

d + [ 1,, dz ] -  =,~kl 
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With the help of (B.7) Eq. (B.4) gets the shape: 

3 
H = hogo ~ + 2 (t k I k + g). (B.8) 

k=l  

The degeneracy of the eigenstates of the 3 electric circuits is classified by the SU3 
group, of which the generators can be written in terms of Bose operators (Ref. 
[18, 19]): 

~r = t1~2,+ ~r = ~(t1~1-t2tz),1 + + 

IIi+ I l+p, ~ + ~13 = ~ 2 2 -  3 ~3J, ~+ = 11 ~3, 
, + + (B.9)  

= ~(5~3 + 2723), 

= ~ ( 2 %  + s~3) 

It should also be mentioned that the occupation number operator 92 is given by 
�9 /~ = ~-~1%- ~2-t2 if" t3t3, + but in the following we have not to consider it. A more 
interesting feature is that the Gaussian kernel K2 (see 3.2) can be expressed in 
terms of the generators of SU3, defined by Eq. (B.9), and therefore this symmetry 
group is not only important with regard to the oscillator approximation (2.3). A 
further interesting aspect to be noted is the correspondence SO3 ~ SU3, because 
SO3 is not realized by the isotropy of a 3-dimensional charge space instead of the 
usual position space. By the introduction of a magnetic interaction (M # 0) 
between the circuits according to (B.2) we obtain a reduction of the symmetries: 
In the charge space we have only invariance against SOz, and the corresponding 
Hamiltonian is characterized by a perturbed SU3 symmetry. This fact is easy to 
verify, as the determination of the normal co-ordinates and frequencies involves 
the resolution of the determinant: 

I LM,t M M 
L - h  M =0,  (B.IO) 

M L - h  

The eigenfrequencies of the 3 coupled circuits now are 

o9~ = wz 2 = o9 2 = 1 / [ (L -M)C]  = 1/hl,zC] 

o9~ = 1/A3C = 1 / (L+2M)C ~ 

and the Hamiltonian assumes the shape 

2 h l  " + ~ 2 )  + -~-  o93~3. 

(B.11) 

(B.12) 
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Eq. (B.12) may also be formulated in terms of Bose operators (in Eq. (B.7), we 
have only to replace L by the appropriate A): 

2 

3f : ho) • (d~d k + 1) + h(.o3(d3-d 3 -~ i). (B.13) 
k ~ l  

Both Eq. (B.13) and Eq. (B.12) are equations for a 2-dimensional oscillator in a 
formal (x~-x2)-plane and an additional oscillator with different w in the x3- 
plane. The only generators of Eq. (B.9) commuting with the Hamiltonian (B. 13) 
are Jr+, L ,  and/3, representing the generators of SU2. By that, the system under 
consideration involves a reduction of the symmetry, if the subsystems (circuits) 
mutually interact, but SUa is exactly preserved. 

Models of this kind may find applications in many disciplines and the symmetry 
groups SU3 and SU2 have a meaning for the characterization of the eigenstates of 
Eqs. (1.11) and (3.3). The advantage of a model with coupled circuits in the 
molecular domain may be viewed in the description of collective excitations of the 
electric charge distribution in a molecule, and e.g. a charge transfer between 2 
interacting molecules gets an illustrative representation. So it is not surprising that 
circuits have already been considered as models of molecular processes [14, 15], 
and it appears to be rather important that the thermodynamics of processes can be 
founded with the help of circuits [16, 17]. We should also emphasize that the 
description of molecular processes by coupled circuits stands in a close relation- 
ship with our investigations on nonlinear field equations with internal structure: 
Besides the symmetry principle, which makes already apparent this great 
similarity, we preferably think of the collective excitations in the coupled circuits. 
This aspect is to a certain degree equivalent to a field theory of an extended 
particle with additional degrees of freedom, and we have already discussed the 
self-interacting oscillator approach of such a theory. However, the use of free 
(mechanical) osciUators or electric circuits in the molecular domain has to be 
restricted, because one has not to do with equidistant energy levels in both 
vibronic and electronic spectra. We have seen that by taking account of the 
self-interaction of an extended particle it is only possible to fit spectra by rather 
anharmonic oscillators (without containing the self-interaction). This fact may 
also be a reason that the theory of H-bonds  does not yet work in a satisfactory way 
with the help of simple oscillator models. 

C. Appendix: Remarks to Numerical Aspects 

As already pointed out in section 3.3, Eq. (3.4) or a specific version of it (e.g. Eq. 
(3.6)) can be treated as self-interacting, anharmonic oscillators. Such a starting- 
point favours the use of symmetry principles, which play a dominant role in 
approximation methods recent developments of perturbation theory. It is also 
possible to make use of purely numerical methods with reference to the inte- 
gration of simplified versions of Eq. (3.4), e.g. the variation principle of Ritz. 
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For this purpose, we write Eq. (3.4) in the form 

h 2 

I  l*l I f f 
(C.1) 

and with respect to actual calculations we have to restrict ourselves to a finite set of 
basis structure functions (in the following, we consider the kernel (3.6)). By the 
means of a finite basis set (of arbitrary functions) {q~k, k = 1, . . .  N} we perform 

I 1 t ~- '-~1 bkg~k, ~Ir*qd' d3x = 

N ' (C.2) 

S~(k~=l bkq~k ) = o" 

and the variation of the total energy yields an approximate calculation of a ground 
state (spin 0) and N - 1 excited states of the same multiplicity. Now the question 
arises, which kind of trial functions may involve simple manipulations of the 
numerical procedure. So far as we could verify it appears that the use of the kernel 
(3.21) justifies the application of Hermite polynomials multiplied with a Gaussian 
as trial functions: 

q~k NkHk(akX) , I 2 2~ = exp l - ~ a k x  ~ (C.3) 

(ozk is a scaling factor for the trial functions and Nk is defined by the normaliza- 
tion). As G d ( x - y )  consists itself of products and sums of two-point Hermite 
polynomials Hn(ko, xk - y k )  multiplied with K2, the evaluation of the expression 

I'I'(y)] 2 I I  Y~ H . ( k o ,  x j - y i ) K 2 ( x  -y ) [ ' I ' ( x ) l  2 d3x d3y 
i = 1  n = 0  

with the help of (C.3) yields integrals containing products of Gaussians and 
polynomials. Because of the correspondences 

H~(ol~x) =,=~o Ct(a~)xl , (C.4) 

xn= l~=0 dl(OZl)Hl(alX) ] 

all integrals can be brought to the form 
q-oO 

I,(x ) = f y~ exp (-c~2y a) exp ( -k2(x  _y)2) dy, (C.5) 

--00 

and this type of integral is easily evaluated by the substitution ~ = y - k~x/k~ + a 2 

to yield an integral of the form 
oo 

Yo y exp dy > 0). (C.6) 
F((n + 1)/2) et ( - a2y  2) (a 2 

= 2am+l 
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By that, (C.5) assumes the shape 

I n ( x ) = e x p (  o2+k2o]  i=o t , , l /  \ o 2 + k 2 ]  

(The extension of the integration to 3 dimensions is straightforward). Since the use 
of trial functions (C.3) implies 

+ m  2 2 

o0 2 x 2 dx  = O f o r m # n ,  

we are not confronted with a growth of four-center  integrals proportional to N 4 as 
it is the case in ab initio calculations. Furthermore,  the calculation of excited states 
is connected to additional numerical effort in ab initio methods, whereas in the 
method presented here we automatically obtain excited states due to the variation 
principle. In order to give an illustration of the method, we consider the kernel KTd 
of Eq. (3.6) in connection with the molecule P(OH)~, because this molecule can be 
classified by a weakly per turbed Td group. 

P(OH)~- exhibits polar character, and the first excited state is split into 4 energy 
levels between 5.6 eV and 6.2eV being associated with n-n*-transitions. For  a 
detailed investigation of the constitutions of phosphoric acid and references to 
other papers, Ref. [37] should be consulted. We have taken account of the polar 
character of P(OH)~- by the contributions Pll  = Pa2 = P13 in the two-point kernel 
function Krd (3.6). If we would omit these terms, the kernel of a completely 
unpolar molecule of the same symmetry class would be obtained (e.g. CH4). As 
already mentioned, the coefficients Pik of the basis structure functions may serve 
as additional parameters of the field equation (3.4). In our calculation, where we 
only intend to demonstrate the formalism, we have fixed these coefficients till a 
normalization factor to the ratio P01,2,3: Pll,2,3:P21,2,3 = 2: 1:2 and k0 was uniquely 
assumed to ko ~ = 1.55 A, in order to agree with the mean bond length P -  O. With 
respect to the trial functions we have made the following restrictions: We use a 
finite basis set of 10 functions with the same scaling factor ak = a = k0x/2, being a 
free parameter  of the trial functions, which we have enumerated as follows: 

u ---exp (-0.5 2(Xl + d  ] 

q~l = Y o U  ; q~2 = d V ' I H l a x I ) u  ; [ 

| 

[ @3 ~--" ~ / ' I H 1  ( o g x 2 )  b / ;  r = Y~Ha(ax3)u  ; 
(C.8) 

= d'2He(aXi)u ; q~6 = Y2H2(ax2)u  ; [" r 
/ 

q~7 = Y2H2(ax3)u  ; ~8 = JV3Hl(aXl)Hl(ax2)u  ; [ 
! 

q~9 = di / '3Hi(axx)Hl(crx3)u ; q~lo = d~F3Hl(Olx2)Hl(ax3)u fl 

These trial functions are consistent with the basis structure functions of the kernel 
Kra. Thus Pol and ~1 can be associated with the central ion (phosphorus), 
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Table 2. Numerical calculation of the wavefunction of P(OH)~ 

W. Ulmer 

Normalization 
factor 1 2 3 4 5 6 7 8 9 10 Energy/eV 

1 (84.3) -1/2 4.2 1.7 1.7 1.7 4.2 4.2 4.2 1.3 1.3 1.3 -9.46 
2 (54.09) -1/2 -4.5 2.5 -1.25-1.25 4.5 0 0 1.7 -1.7 0 -3.94 
3 (59.3) -1/2 -2.6 0 1.3 -1.3 -2.6 5.2 0 -1.6 -1.6 3.2 -3.80 
4 (12) -1/2 -1 0 0 0 -1 -1 3 0 0 0 -3.49 
5 (13.74) -1/z 0 -1.3 -1.3 -1.3 0 0 0 1.7 1.7 1.7 -3.29 

q~2, q~3, q~4 reflect the dipole structure of the molecule which is expressed by the 
terms PlkHl(ko, xk - yk) of Kra, and ~5 - q~lo are related to the quadrupole terms 
P2gH2(ko, Xk --Yk). Using the trial functions (C8) we have calculated via energy 
variation P(OH)~- on the basis of the kernel Krd without trying to fit the 
mentioned parameters such that the computed results agree exactly with the 
corresponding experimental results, because we have to be aware of the fact that 
P(OH)2 is a constitution of HaPO 4 being realized in solutions with very strong acids 
as solvent. Therefore the experimental determination of the ionization energy 
depends on the solvent [37] (order: 8.5 eV-9.5 eV) and instead of discrete energy 
levels one observes sometimes a rather continuous absorption of light in the interval 
5.6 eV-6.3 eV due to further influences (interaction with the solvent, vibration and 
rotation spectra). According to Table 2, where some results have been listed, the 
computed ionization energy amounts to 9.4 eV and the 4 lowest excited states can be 
roughly classified as n-n*-transitions. But although the formalism presented here 
exhibits many advantages with respect to computational procedures and avoids the 
inconsistencies of semi-empirical MO methods (see Sect. 3.3), we should point out 
that the  essential aim of these considerations should not only be viewed in an 
improvement of numerical methods, because according to Sect. 3.3 Eq. (3.4) can also 
be viewed under the aspect of the Ginzburg-Landau theory of phase transitions (if 
k o ~ oo is performed) and symmetry principles, representing a generalization of the 
Ginzburg-Landau theory to systems with internal structure. 
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